Simulation of pedestrian flows by optimal control and differential games

نویسندگان

  • Serge Hoogendoorn
  • Piet H.L. Bovy
چکیده

Gaining insights into pedestrian flow operations and assessment tools for pedestrian walking speeds and comfort is important in, for instance, planning and geometric design of infrastructural facilities, as well as for management of pedestrian flows under regular and safety-critical circumstances. Pedestrian flow operations are complex, and vehicular flow simulation modelling approaches are generally not applicable to pedestrian flow modelling. This article focusses on pedestrian walking behaviour theory and modelling. It is assumed that pedestrians are autonomous predictive controllers that minimize the subjective predicted cost of walking. Pedestrians predict the behaviour of other pedestrians based on their observations of the current state as well as predictions of the future state, given the assumed walking strategy of other pedestrians in their direct neighbourhood. As such, walking can be represented by a (non-co-operative or co-operative) differential game, where pedestrians may or may not be aware of the walking strategy of the other pedestrians. Copyright # 2003 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows

Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...

متن کامل

Title of dissertation: DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

Title of dissertation: DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS Xin Zhang, Doctor of Philosophy, 2012 Dissertation directed by: Professor Gang-len Chang Department of Civil & Environmental Engineering In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some ...

متن کامل

On the Suicidal Pedestrian Differential Game

We consider the following differential game of pursuit and evasion involving two participating players: an evader, which has limited maneuverability, and an agile pursuer. The agents move on the Euclidean plane with different but constant speeds. Whereas the pursuer can change the orientation of its velocity vector arbitrarily fast, that is, he is a “pedestrian” á la Isaacs, the evader cannot m...

متن کامل

Mean Field Games with Nonlinear Mobilities in Pedestrian Dynamics

In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup l...

متن کامل

Optimal Guidance of Pedestrian-Vehicle Mixed Flows in Urban Evacuation Network

In metropolitan areas, a potentially large number of pedestrians depend either on transit or other modes for evacuation, or need to walk a distance to access their passenger cars. In the process of approaching some designated pick-up points for evacuation, the massive number of pedestrians may incur tremendous burden to the vehicles on the roadway network. Thus, an effective coordination betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003